Prostate Segmentation and Regions of Interest Detection in Transrectal Ultrasound Images

نویسنده

  • Joseph Awad
چکیده

The early detection of prostate cancer plays a significant role in the success of treatment and outcome. To detect prostate cancer, imaging modalities such as TransRectal UltraSound (TRUS) and Magnetic Resonance Imaging (MRI) are relied on. MRI images are more comprehensible than TRUS images which are corrupted by noise such as speckles and shadowing. However, MRI screening is costly, often unavailable in many community hospitals, time consuming, and requires more patient preparation time. Therefore, TRUS is more popular for screening and biopsy guidance for prostate cancer. For these reasons, TRUS images are chosen in this research. Radiologists first segment the prostate image from ultrasound image and then identify the hypoechoic regions which are more likely to exhibit cancer and should be considered for biopsy. In this thesis, the focus is on prostate segmentation and on Regions of Interest (ROI) segmentation. First, the extraneous tissues surrounding the prostate gland are eliminated. Consequently, the process of detecting the cancerous regions is focused on the prostate gland only. Thus, the diagnosing process is significantly shortened. Also, segmentation techniques such as thresholding, region growing, classification, clustering, Markov random field models, artificial neural networks (ANNs), atlas-guided, and deformable models are investigated. In this dissertation, the deformable model technique is selected because it is capable of segmenting difficult images such as ultrasound images. Deformable models are classified as either parametric or geometric deformable models. For the prostate segmentation, one of the parametric deformable models, Gradient Vector Flow (GVF) deformable contour, is adopted because it is capable of segmenting the prostate gland, even if the initial contour is not close to the prostate boundary. The manual segmentation of ultrasound images not only consumes much time and effort, but also leads to operator-dependent results. Therefore, a fully automatic prostate segmentation algorithm is proposed based on knowledge-based rules. The new algorithm results are evaluated with respect to their manual outlining by using distance-based and area-based metrics. Also, the novel technique is compared with two well-known semi-automatic algorithms to illustrate its superiority. With hypothesis testing, the proposed algorithm is statistically superior to the other two algorithms. The newly developed algorithm is operator-independent and capable of accurately segmenting a prostate gland with any shape and orientation from the ultrasound

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of reinforcement learning for segmentation of transrectal ultrasound images

BACKGROUND Among different medical image modalities, ultrasound imaging has a very widespread clinical use. But, due to some factors, such as poor image contrast, noise and missing or diffuse boundaries, the ultrasound images are inherently difficult to segment. An important application is estimation of the location and volume of the prostate in transrectal ultrasound (TRUS) images. For this pu...

متن کامل

Signal Intensity of High B-value Diffusion-weighted Imaging for the Detection of Prostate Cancer

Background: Diffusion-weighted imaging (DWI) is a main component of multiparametric MRI for prostate cancer detection. Recently, high b value DWI has gained more attention because of its capability for tumor characterization. Objective: To assess based on histopathological findings of transrectal ultrasound (TRUS)-guided prostate biopsy as a reference, an...

متن کامل

Automatic segmentation of radiographic fiducial and seeds from X-ray images in prostate brachytherapy.

Prostate brachytherapy guided by transrectal ultrasound is a common treatment option for early stage prostate cancer. Prostate cancer accounts for 28% of cancer cases and 11% of cancer deaths in men with 217,730 estimated new cases and 32,050 estimated deaths in 2010 in the United States alone. The major current limitation is the inability to reliably localize implanted radiation seeds spatiall...

متن کامل

Random walk based segmentation for the prostate on 3D transrectal ultrasound images

This paper proposes a new semi-automatic segmentation method for the prostate on 3D transrectal ultrasound images (TRUS) by combining the region and classification information. We use a random walk algorithm to express the region information efficiently and flexibly because it can avoid segmentation leakage and shrinking bias. We further use the decision tree as the classifier to distinguish th...

متن کامل

A molecular image-directed, 3D ultrasound-guided biopsy system for the prostate

Systematic transrectal ultrasound (TRUS)-guided biopsy is the standard method for a definitive diagnosis of prostate cancer. However, this biopsy approach uses two-dimensional (2D) ultrasound images to guide biopsy and can miss up to 30% of prostate cancers. We are developing a molecular image-directed, three-dimensional (3D) ultrasound image-guided biopsy system for improved detection of prost...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007